Symplectic Automorphisms of K3-Surfaces

(after S. Mukai and V.V. Nikulin)

Geoffrey Mason
University of California at Santa Cruz

A short, but fairly complete, account is given of the work of Mukal and NikuLIN
on so-called symplectic automorphisms of K3-surfaces. (Nikulin calls such
automorphisms algebraic.)

1. INTRODUCTION

If X is a K3-surface then, essentially by definition, X has a nowhere-vanishing
holomorphic 2-form w. The group G of automorphisms of X which preserves w
is called the group of symplectic automorphisms of X, and the combined work
of Mukal [7] and NIKULIN [8] gives a complete list of the possibilities for the
isomorphism type of G (it is known that G is a finite group). In fact, one can
be much more precise, in particular Mukai shows that there is an imbedding
i:G—M,; where M3 is one of the sporadic Mathieu groups (see below) and
that this induces a QG-isomorphism from the total rational cohomology
V' = H'(X,Q) of X to the usual permutation module P (of degree 24) of M.
Furthermore by Hodge theory one knows that dimV'¢ = 5 (V¢ = the space
of G-invariants in V), so that because of the isomorphism V' = P we find that
i(G) has at least five orbits on the 24 letters being permuted. Mukai shows
that, conversely, if H < M,; has at least five orbits on the 24 letters then
there is a K3-surface on which H acts (effectively) as symplectic automor-
phisms. Because of the surprising connection with M,;, these results are of
interest to finite group-theorists as well as others.

I have taken the opportunity of simplifying Mukai’s group-theoretic analysis
of the possibilities for G. Thus only some standard facts, available in {6] and
the elementary parts of [4], are needed, and the only classification results we
use are the results of BRAUER [2] giving the simple groups of order 2¢-3%-5
(needed only if @ < 7, b < 2!). There is almost nothing new here, although
we should comment that for the possibility G = Z, X Zg Mukai has to refer to
Nikulin, whose proof that this cannot occur is quite intricate. In fact we will
eliminate this possibility quite easily at the outset, making the overall proof
reasonably short.



2. K 3-SURFACES

We recall some pertinent facts about K 3-surfaces. K 3-surfaces were named
(by A. Weil) after Kummer, Kihler, Kodaira and the beautiful mountain K2
in Kashmir. They form one of 10 classes of minimal models of compact con-
nected 2-dimensional complex manifolds in the Enriques-Kodaira classification
(and one of 5 classes of such manifolds with Kodaira dimension 0). Double
coverings of the complex projective plane with a branch curve of degree 6 hav-
ing only simple singularities are examples, but there are K 3-surfaces that can-
not be constructed in this way. (In fact, the set of algebraic K 3-surfaces is a
union of countably many [9-dimensional families in the 20-dimensional family
of all K3-surfaces.) For background material on K3-surfaces we refer the
reader to [I]. Those readers not familiar with K3-surfaces may take the
relevant results below as axioms without impairing their understanding of the
later group-theoretic analysis.

We may define a K 3-surface X to be a compact, 2-dimensional complex
manifold such that X has first Betti number 0 and trivial canonical bundle.
Then the cohomology space V = H'(X,Q) is even, that is the groups
H'(X,Q) and H3(X,Q) are trivial. The Hodge decomposition yields a
representation of V" as a direct sum

V = HY(OXO)®H (X)X ®H" (X)®H' (XD HYX) , 2.1
each of the five summands being non-trivial. In fact we have
dimH® = dimH>® = dimH®? = dimH* = 1 and dimH"' = 20 . (2.2)

In particular dimV = 24. Now the group G of symplectic automorphisms of
X is the group of automorphisms of X which acts trivially on H>°(X). Then by
duality G is trivial on H%?(X), as well as being trivial on HYX) and H(X).
Mukai establishes that H'!(X) also has a non-zero G-invariant, whence

dimV¢ = 5. (2.3)

3. THE REPRESENTATION OF G ON H*(X,Q)

We have already remarked that G is a finite group, and Mukai’s method is to
first compute the character of G on the rational G-space V. This proceeds as
follows: first fix a point p € X, and let G, = {g € Glgpp = p} be the
corresponding isotropy group. Then G, acts on the tangent space T, at p
(essentially via the map g + dg sending an element g €G, to its differential).
This action is faithful, so realizing G, as a subgroup of GL(T,) = GL,(C).
But in fact, because GI, preserves the 2-form w, Gp preserves a non-degenerate
symplectic form on 7y, yielding

There is an imbedding G, — SL»(C). In particular, the abelian subgroups (3.1)
of G, are cyclic.

Of course, all finite subgroups of SL,(C) are well known. Next, one knows



that for each g € G, the set F(g) = {peXligp = p} of fixed-points of g is
finite. Using a version of the Atiyah-Singer index theorem Mukai proves the
following crucial result.

The cardinality |F(g)| of the g-fixed-points depends only on the order |g| (3.2)
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of g, and is given by the formula | Fg| =

Here, n = |g| = 2, and p ranges over the prime divisors of n. This determines
the character of G on V; because of the fact that H*(X, Q) is even and F(g) is
finite, the Lefschetz fixed-point-formula tells us the following:

If V = H*(X,Q) affords the character x of g then for all 1 = g € G we (3.3)
have x(g) = |F(g)l.

We complete this section with the possibilities for x(g) which follow from (2.2),
(3.2) and (3.3). We may write x(n) instead of x(g) if g has order n, and we
obtain the following

n 123456789111215 1623

(3.4)

x(n)2486442322 2 1 1 1 1

All we need, to determine the nature of G, are the results (2.3) and (3.1)-(3.4),
and as we said these may be taken as axioms in the following since nothing
more concerning the nature of x will be needed.

4. THE MATHIEU GROUPS M,3 AND M4,
We record some results concerning the Mathieu groups. Let £ be a set of car-
dinality 24 on which the symmetric group =,, acts in the usual fashion. Zp,
contains a (maximal) subgroup M,, (which acts quintuply transitively!) on Q.
It can be defined as the stabilizer in 3,4 of a collection of 759 subsets of £ of
size 8 with the property that no two have more than 4 elements of £ in com-
mon, and is closely related to the so-called extended binary Golay code. See
[3] for more details. M,4 is a simple group, as is the subgroup M,; which is
by definition the isotropy group (in M,,) of a point of . Both M,; and M,
are among the so-called sporadic simple groups, which accounts for the
interest of the results to group-theorists. However, both the simplicity and
sporadic nature of these groups is irrelevant as regards the present discussion.
Exactly why M,; plays a role is presently unclear.

Next we list those isomorphism types of subgroups of M,; which, up to con-
Jjugacy, are maximal subject to having at least five orbits on £. The results can
be readily checked, for example, from table 3 of [3].

() PSL,(TX(=SL;(2))

(13) Ae(=PSL,(9))

(i) s

(iv) E ¢ : A5 (no elements of order 6)
) Ey : Qg



(vi) Ey : Dg

(vil) (A4 X Ay) : Z, (a 3-Sylow being inverted by an involution)

(viii) E 4 : D, (trivial center)

(ix) (Q3*Q3) : Z;3 (no elements of order 12)

(x) E 6 : 24 (no elements of order 6)

(xi) GLy(3(=Qs : 23)

Here, we have used fairly standard notation: A4, is the alternating group on n
letters, 3, the corresponding symmetric group, E,- the elementary abelian
group of order p’ for a prime p, Qs the quaternion group of order 8 and Dy
the dihedral group of order 2k. Furthermore, if 4 and B are groups, then
A : B denotes a semidirect product with normal subgroup 4, and A*B a cen-
tral product of 4 and B (i.e., a quotient of 4 X B by a subgroup of its centre).
The information provided specifies a unique group in each of (i)-(xi).

We remark that the requirement of having at least five orbits on § does not
prevent some of the groups listed exhibiting several different orbit structures
(though it is evident that the number of orbits depends only on the group).
Thus M,; contains a conjugacy class of PSL,(7) with orbit lengths 1,1,1,7,14
and another with orbits 1,1,7,7,8.

Denote by P the permutation module for M, obtained from its action on
Q. We regard P as a @QH-module for each subgroup H of M, by restriction. If
P affords the character « then of course for g € M4 one has

w(g) = # of letters in Q fixed by g.
It is readily verified that the following holds:

If geMo; then the value of w(g) depends only on the order of g and is (4.1)

given by the same formula as in (3.2), viz. w(g) = —] (1 +—[—) where
n =gl " pin P

5. MUKAI'S RESULTS
It was Mukai who first noticed the strange coincidence of (4.1) and (3.2) and
used it to prove the following results:

THEOREM (MUKAI). If G is a group of symplectic automorphisms of the K3-
surface X then there is an imbedding i:G — M3 such that i(G) is a subgroup of
one of the groups listed in (i)-(xi) above.

THEOREM. If V = H'(X,Q) and P are as above then the imbedding i induces a
QG-isomorphism of modules a.V — P.

REMARKS
() Granted the existence of i, the second theorem is a consequence of
4.1).

(i)  Granted the existence of any imbedding G — M3, a still exists, whence
by (2.3) we can conclude that i(G) has at least five orbits on Q and
hence is in one of the groups (i)-(xi). Thus to prove the theorems, we
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only need some imbedding G — M ;.
(i)  Mukai exhibits K 3-surfaces admitting each of the groups (i)-(xi) as sym-
plectic automorphisms, but we will not deal with that result here.

The remainder of this paper is concerned with a proof of Mukai’s theorem. As
we already mentioned, we use only the results (2.3), (3.1)-(3.4), together with
the following facts concerning M,;.

6. SOME PROPERTIES OF My,

We list here some more technical results concerning the 2-structure of M,;.
First we introduce the group A, the (universal) central extension of 44 by Z,,
Le., the non-split extension 1 — Z, — Ag — Ag — 1. This group will play a
role in what follows. For now we need only the following:

y g and M3 have isomorphic Sylow 2 — subgroups, of order 2'. 6.1)

(See [5].) Let T be a 2-Sylow subgroup of M,;. As M»; has a subgroup of the
shape E ¢ : A4, the following properties of T are easily verified.

Let J = J(T) be the subgroup of T generated by all abelian subgroups of (6.2)
maximal order (which order is 16). Then J has order 2° and it contains
exactly two subgroups of type E ¢, three of type &4 X 14, and no others of
order 16 which are abelian.

An immediate consequence is

T has no subgroup isomorphic to Z, XZg . 6.3)

7. NIKULIN’S RESULT
Given our group G of symplectic automorphisms, let a(n) =
# {geGl|g| = n}. Then of course we have

Sa(n) = |G|

n=1

and it is also well known that, in the notation of (3.3),
|G| 'Za(n)x(n) = dimVC°

this latter quantity being =5 by (2.3). For example if |G| is a prime p we get
a(l) = 1, a(p) = p—1, x(1) = 24, x(p) = 24/p+1 and find that

|G| 'Sa(n)x(n) = 48/p+1 = 5.

This forces p < 7, and a similar analysis shows that if G is cyclic of order
n=|G| then the inequality n = 9 leads to |G| 'Za(n)x(n) < 5. So we get

If g € G then |g| < 8. (7.1)

Next we prove



If t€G is an involution then Cg(t) is isomorphic to a subgroup of A 8 (7.2)
As a corollary, we obtain

A 2-Sylow subgroup of G is isomorphic to a subgroup of M. (7.3)

The corollary follows from (7.2) and (6.1). To prove (7.2), let F = F(t) be the
points of the K 3-surface X fixed by ¢, so that |F| = 8 by (3.4). Of course the
group C = Cg(r) preserves F. Now if an element g € C fixes each point of F
then |g| = 1 or 2 by (3.4), whereas by (3.1) no two distinct involutions of G
can fix a common point of X. This shows that only <t > fixes each point of
F, yielding an imbedding C/<t> => 3. Let us wrnite C = C/<1 >, thinking
of C as a group permuting F.

Suppose that C contains an odd permutation. Then it contains a permuta-
tion x of the shape (12), (1234), (12)(34)(56). (123456). or (12345678). In the
first four cases X fixes points of F, as does the group <x,7>. By (3.1) we get
<x,1> cyclic, so |x|=2|x|=4, 8, 4 or 12, respectively. So the fourth case is
out by (7.1). In the first three cases, x(x) = 4, 2, or 4 by (3.4), whereas since
F(x)C F we see that |F(x)| = 6, 4, or 2 respectively. This contradiction
shows that x can only be an 8-cycle.

Now as G has no elements of order 16 by (7.1) then <x,r > =7, XZ;. Let
u be the unique involution of < x.r > which has a square root in <x,7>, and
apply a similar procedure to Cg(u) = B, say, setting E = F(u). Of course
<x,t> < B. Moreover as t #* u then ¢ fixes no element of E by (3.1),
whereas any element y € <x,r> of order 8 must satisfy y* = u, so  fixes
just 2 points of E by (3.4), so y has shape (1234)(56) in its action on E as y
induces an element of order 4. Thus < x,r > induces a group of even permu-
tations of E, putting <x,1 >/<<u><=>Aj.

Finally, this means either <x,r><>Z; XAg or <x, t>"—-)Ag and since nei-
ther Z, XA nor Ag contains Z, XZg (cf. (6.1)-(6.3)), this shows that X does
not exist. _ )

Thus we get C=>Agq, so that C=>Z; XAg or C=>Ag. Assume the first case.
Then no involution of C fixes a point of F by (3.1), so a Sylow 2-subgroup of
C has order at most 8. Also, C cannot contain an element of the shape (123)
by (3.4), and it has no elements of order 5 or 7 since there are no elements of
order 2p for p=5 by (7.1). Thus IC| divides 24 and we easily verify that,
whatever the possibility for C, the group A has a subgroup isomorphic to C.
So in any case C=>Ay as required.

Let A<G be an abelian subgroup of even order. Then A is isomorphic to a (7.4)
subgroup of one of the following groups: E ¢, L4 X Z4, Ly, Zy X L.

PROOF. A contains an involution ¢, so by (7.2) we get A=>Ag. If A is a 2-
group then we may take A < T, a 2-Sylow of Ay, in which case one of the
first three possibilities applies by (6.2). If 4 is not a 2-group, it must have
order 2%-3 for some a since there are no elements of order 2p for primes



p = 5. Similarly there are no elements of order 12, so the 2-Sylow subgroup
of Ais Ey and A = Ey XZs. Finally, setting A = A/<t> < Ay as in
the proof of (7.2), it was shown there that an element of A of order 3 neces-
sarily has the shape (123)(456). Then if 4|4 | then 4 contains an involution b
fixing both 7 and 8. Then b pulls back to an element of order 4 in 4 < Ag,
and as A contains no such element this is impossible. So 4 |4 |, that is a < 2
and (7.4) follows.

We can use similar arguments to that of the proof of (7.2), applied to elements
of odd prime order p. If x is such an element then Cg(x) acts on the set
F(x) = F of fixed points of x in its action on the surface X. Again the group
Cg(x)/ <x > induces a group of permutations on X. If p = 5 then |X| <p
by (3.4), so pt | Ce(x):<x >|, which forces <x> to be already a p-Sylow
subgroup of G. If p = 3 then |X| = 6 and Cg(x)/<<x> < 3. In this case
no element of Cg(x)/<<x> of order 3 can be a permutation of the shape
(123) (by (3.1) and (7.1)), so |Cg(x)/<<x >| cannot be divisible by 9, that is
| Cg(x)| is not divisible by 3’. By taking x to be an element in the center of a
3-Sylow subgroup, say R, of G, we deduce that |R|<9. Hence, we have
proved

|G| divides 27-3%-5-7 . (7.5)

(NIKULIN). Any abelian subgroup of G is contained in one of the following (7.6)
groups: Eg, Zy }X2Zy, Zy, Iy X2Z¢, Eg, Zs o1 Z4.

PROOF. We are done by (7.4) if the abelian group has even order. If not, it has
order dividing 32-5-7 by (7.5) and each element has order 3, 5, or 7 by (7.1).
The result follows.

8. THE CASE WHERE |G| IS DIVISIBLE BY 7
We show in this section
If 7| | G| then G is isomorphic to a subgroup of L, (7). 8.1)

We fix a 7-Sylow subgroup S of G, so that |S| = 7 by (7.5). By (7.1) we see
that S is its own centralizer in G, that is S = Cg(S). Set N = Ng(S).

The order of N is odd. (8.2)

ProOOF. Otherwise there is an involution ¢+ € N, and since ¢ does not centralize
S then <<S,t> = D,. Setting H = <<S,t>, H contains the identity, 6 ele-
ments of order 7 and 7 of order 2. This yields

dimVH = %(24+6-3+7~8) =7

On the other hand we also have



dimVS = —;—(24+6-3) — 6,

putting us in the situation that S < H and yet dimV'" > dimV3S. This is
impossible, and the result follows.

S normalizes no non-trivial subgroup of G of order coprime to 7. 8.3)

Proor. For let 1 %= H < G satisfy H < HS and 7{|H|. By a well known
result [4, Theorem 6.2.] we can take H to be a p-group for some prime p. As
S = Cgx(S) we must have 7| |H|—1, so by (7.5) we see that p = 2. More-
over S acts on Z(H), and by (7.6) together with 7||Z(H)| —1 we find that
Z(H) = Eg. Set K = Z(H)-S. Then K contains 48 elements of order 7 and 7
involutions, yielding

dimVK = 5—[6(24+7-8+48~3) = 4.

This contradicts (2.3), and completes the proof.
If G is solvable then G = Z; or Z7:25 . (8.4)

PROOF. Since S normalizes the Fitting subgroup F(G) of G it normalizes each
of the p-Sylow subgroups of F(G) also. By (8.3), such a p-Sylow subgroup of
F(G) is trivial if p 7, so we must have F(G) = S G since
Cs(F(G)) < F(G) ensures that F(G) is non-trivial. Since Cg(S) = S then
G/S < Aut(S) = Z. Now the result follows from (8.2).

IfGis non-solvable then G is non-abelian simple and | N | = 21. (8.5)

PROOF. Let E be a minimal (non-trivial) normal subgroup of G. By (8.3) we
get 7| | EI, so that S < E. If E = S then G is solvable, the converse being
true by (8.4).

Suppose E # S. Since E is the direct product of isomorphic simple groups
E must itself be simple and non-abelian. Now by a theorem of BURNSIDE {4,
Theorem 7.43), if Ng(S) = S then E = K:S for some group K of order
coprime to 7. This is impossible by (8.3), so Ng(S) > S. After (8.2) we get
Ng(S) = N has order 21.

Finally, the Frattini argument [4, Theorem 1 371 yields
G = E-Ng(S) = E-N = E, so that G = E is non-abelian simple, and we are
done.

The order of G is not divisible by 5 . (8.6)

PrOOF. If false, G has a Sylow 5-subgroup F of order 5, and Cq(F) = F by
(7.1). If Ng(F) = F then G = K:F for some group K of order prime to 5 by
Burnside’s theorem [loc cit], against the simplicity of G (cf. (8.4) and (8.5)). So
we have |Ng(F):F| = 2 or 4 since Ng(F)/F < Aut(F) = Z,.
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Now after (8.5) we have |G| = 2%:3%5-7 with b = 1. Moreover by Sylow’s
theorem applied to both Ng(S) and Ng(F) we have |G:Ng(F)| = 1 (mod 5)
and |G:Ng(S)|=1 (mod 7), and in the latter case we even know that
INg(S)| = 21. The only possibilities are the following:

(i)  INg(P)| = 10,|1G| = 25:3%.5-7.
(i) ING(F)| =20,|G| = 22-32:5-7.

We use the equations |G| = Sa(n) and dimVC = |G| 'Za(n)x(n)=5,

eliminate a(2) from them, and arrive at the inequalities
16

0<|G| '[2a(3)+4a(4)+4a(5)+6a(6)+5a(T)+6a(8)|<3+ ToT *)

In case (i) we have a(5) = 2|G|/5 and a(7) = 2|G|/7, which gives

OsIGI_'[2a(3)+4a(4)+6a(6)+6a(8)]<3+%—% = 17—0,
in particular O<i—L. Thus |G| <16-35, a contradiction.

IGI 35
In case (ii)) we have a(5) = 1G1/5, a(7) = 2|1G|/7. Moreover in this case

Ng(F) contains an element x of order 4. By (7.1) Cs(x) is a 2-group, of order
at most 8 since | Cg(x)| divides |G |. So either | Cg(x)| = 8 and x is not con-
jugate to its inverse, or else Cg(x) = <x > and x is conjugate to its inverse.

In either case we get a(4)= -Ig—l Now (*) yields

0<IGI—1[2a(3)+6a(b)+6a(8)]<3+%—%_179._ L

yielding |G| <70, contradiction.

PROOF OF (8.1). We may assume G non-solvable by (8.4), whence it is simple
of order 27:3-7 by (8.6) and (8.5). In fact (8.5) and Sylow’s theorem force
|Gl = 2937 with @ = 3 or 6. If @ = 3 then G = Ly(7), being a simple
group of order 168.

It remains to show that ¢ = 6 is impossible. In fact we will show that G has
a subgroup of index 7, which clearly suffices. Now by a theorem of FROBENIUS
[4, Theorem 7.4.5(a)] there is a 2-group U in G such that Ng(U)/Cg(U) is not
a 2-group. Choose U with |U| maximal. By (8.3), Ng(U) has order 2°-3 for
some b. Let T be a 2-Sylow of G containing U with T, = Nr(U) a 2-Sylow of
Ng(U). If T, = T then Ng(U) has index 7 in G as required, so we can assume
that T, :T. Hence |UI<16  since |T| = 2°. Note  that

Ce(U)<<U = 0,(Ng(U)) by choice of U. Let R == Z3 be a 3-Sylow of Ng(U).
Suppose first that |U|=<4. Then R acts faithfully on U, so U = E, and
U = Cg(U). Now from (6.2), we see that T (having index 2 in a 2-Sylow of
M ;) certainly has a normal subgroup E isomorphic to Eg. Then one checks
that | Cg(U)| =8, against U = Cg(U). So |U|=8.
Next, since Cg(U)<U then certainly Z(TV<Z(U). So if R centralizes Z(U)
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then N(Z(T)) contains both T and R and hence has index 7 in G since Z(T)
cannot be normal in G by simplicity. So R does not centralize Z(U), and this
is enough to ensure that U is abelian.

If U= E then U< T since all E’s in a 2-Sylow of My; are normal.
This is false, so if |U| = 16 then U = Z4XZ4 by (6.2). Then U is the unique
subgroup of T of type Z4 XZ,, so U is characteristic in T, whence normal in
T. So in fact |U| = 8 and since R does not centralize U then U = E4. Let
Uy = Cy(R)y = Z;, so that Uy = Z(Ng(U)). By choice of U,
Ng(Ug) = Ng(U).

Now |T,:U| = 2 and U is not the only Eg-subgroup of T'|. Thus T has
exactly two Eg-subgroups, call them U and Uy, and T, = UU,. This forces
T, = Ni(T)) to satisfy |T,:T| = 2. Then U,U, are not the only two Eg-
subgroups of T, (otherwise Np(U)<tT), so there is x € T, \ T lying in an
Eg-subgroup of T,. Since U* = U, the only possibility is that x centralizes
U N U(=E,), in particular x € C5(Ug)=Ng(U), so x € T;. This is not
the case and (8.1) is proved.

9. THE CASE WHERE |G| IS DIVISIBLE BY 5
Here we prove

If 5 divides |G| then G is isomorphic to a subgroup of one of the groups: (9.1)
25, Ag, E16:45.

We fix a Sylow 5-subgroup F of G. By (7.1) we have Cg(F) = F. Let
N = Ng(F). Then N/F<Aut(F) = Z,.

If A is a non-trivial F-invariant subgroup of G of order prime to 5 then (9.2)
A = E.

PROOF. By [4, Theorem 6.2.2] F normalizes a p-Sylow subgroup of 4 for each
prime p; call such an A-invariant p-Sylow S,. By (7.1) we get 5||S, | — I, which
forces A = S,. Similarly as C4(F) = 1 by (7.1) we must have |A| = 16
since |4 | <27, and the result follows easily.

The conclusions of (9.1) hold if G is solvable . 9.3)

PrOOF. If F < F(G) then F = F(G) by (7.1) and the nilpotence of F(G).
Then G/FSAut(F) = Z4, s0G < 15'14 = 25.

If F < F(G) then F(G) = E ¢ by (9.2). Moreover F-F(G)]G, in fact
F-F(G)/F(G) = F(G/F(G)), so G < E s (Z5-1,). But this latter group con-
tains, besides the identity, 35 involutions, 5-28 elements of order 4, 5-16 ele-
ments of order 8 and 2° elements of order 5. This yields

dimV© = ZS(Q4+835+4528+2516+42°) = 4,
contradiction. So in fact G < E g - Dy < E 445, as required.
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PrOOF OF (9.1). We may assume that G is non-solvable by (9.3). Let E be a
minimal normal subgroup of G, and assume first that 5||E|. If E is solvable
then E is an elementary abelian p-group for some p, whence £ = F and G is
solvable. So E is non-solvable, hence non-abelian simple since it must be a
direct product of isomorphic simple groups.

By Brauer’s result [2] we get E = A5 or Ag. In the first case
G < Aut(E)=3; and we are done. In the second case,
G/E < Out(Ag¢) = E,4, and it is well known that the three subgroups of
index 2 in Aut(A¢) are of type PGL,(9), Z¢ and M g, respectively (Mg is the
stabilizer of two points in the action of M, on 12 points). Now PGL,(9) con-
tains an element of order 10, which shows that G is neither PGL,(9) nor the
full automorphism group Aur(A4).

The enumeration of elements of =¢ is well known, and leads to dimV¢ = 4.
Similarly, a subgroup M, in M,; has only four orbits on @ as is readily
checked, and hence, since we know that the character of any M, on
V = H*(X,Q) is the same as that of an M, on P = Qf, we must get
dimV% = 4 in this case, too.

So the result is proved if 5||E|. Assume therefore that 5 does not divide
|E|. By (9.1), E = E |, and E = Cg(E) by (7.6). As G is non-solvable then
so is G/E and hence a minimal normal subgroup of G/E must be isomorphic
to As or Ag¢. As we have already seen that the group E¢(Zs-Z4) cannot
occur, it follows that G/E = A5 or As. Now the group M,; contains a sub-
group E s 4¢ with 4 orbits on @, and as we have seen before this forces
dimV¢ = 4if G = E16'A6- So in fact G = E|6'A5.

There are two possibilities for the isomorphism type of E considered as an
F,As-module. In the first, 45 is transitive on the non-identity elements of E;
in this case G has a subgroup H of index 5, order 2¢-3, with a normal 2-Sylow
U and Sylow 3-subgroup R (=Z,) satisfying Cy(R) = 1. Then one finds (see
(10.3)) that U = J(T) in the notation of (6.2), in particular E has a comple-
ment in U, hence in G by a well known result of GascHUTZ ([6, 1.17.4]). So
G = E ¢ - A5 is a split extension isomorphic to the group M, of [3], and cer-
tamly lies in M23.

The other possibility is that there are two orbits in the action on E¥, of
lengths 5 and 10. In this case the subgroup H of G or order 2%-3 has a normal
2-Sylow U, 3-Sylow R, and Cg(R) = Cy(R) = E,. Then H contains 27 invo-
lutions, 32 elements of order 3, 36 of order 4, and 96 of order 6, yielding

dimvH = 1—;5_-(24+8-27+6-32+4-36+2~96) =4

This contradiction completes the proof of (9.1).
10. THE CASE WHERE |G| IS DIVISIBLE BY 9

We turn to the cases in which neither 5 nor 7 divide |G|. So G is solvable of
order 2¢-3% with a < 7 and b < 2. Here we prove
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If 9 |IG| then G is isomorphic to a subgroup of one of the following: (10.1)
Eg : Qg, E9 . Dg, (A4 XA4)'Zz.

ProoF. Let R be a Sylow 3-subgroup of G, so that R = Z3XZ; by (7.1).
Suppose first that R < F(G). By (7.6) we get R = F(G), so as R = C¢(R)
then G/R < Aut(R) = GL,(3). As G/R is a 2-group it must be isomorphic to
a 2-subgroup of GL,(3). This latter group has three maximal subgroups, of
type Zg, Qg and Dy respectively. Now the group Eg:Zg has 9 involutions, 18
elements of order 4, 36 of order 8, and 8 of order 3, yielding

dimVS = %(24+8-9+4-18+2-36+6-8) =4

This shows that a 2-Sylow of G cannot contain Zg, hence lies in Qg or Dy,
giving the first two possibilities.
Before continuing the proof of (10.1) we interpolate two useful results.

Suppose B is a 2-group with |B:Z(B)| = 4. Then its derived group B’ (10.2)
has order |B’| = 2.

PrOOF. Let |B| = 2". If x € B\ Z(B) then Cp(x) = Z(B)<x > has index
2 in B. Thus B has exactly 2" 2+—(2"—2" ~2) conjugacy classes, that is

52" 3 classes. On the other hand let |B’| = 2°. Note that ¢ =1 as B is
non-abelian. Then B has |B:B’| = 2" ¢ characters of degree I, and since the
number of irreducible characters equals the number of conjugacy classes, B has
52" 73 — 2"~ jrreducible characters of degree =2. Since |G| equals the sum
of the squares of the degrees of the irreducible characters we must have

2" = 2" 4 4520320,
This reduces to 2" ¢ = 2" !, whence ¢ = 1 as required.

Suppose B is a 2-group in M3 such that |B| < 2¢ and B has an auto- (10.3)
morphism a of order 3 satisfying Cg(a) = 1. Then either B is abelian or
else B = J(T) in the notation of (6.2).

PrOOF. Suppose that B is non-abelian. Set Z = Z (B)iB. Since a fixes no

elements of B* the same is also true of Z and B/Z. If |B:Z| = 4 then
|B’| = 2 by (10.2), so a centralizes B’. This is false, so we have |B/Z| = 16
and |Z|=4. In fact, C,(a)=1 forces Z=E,. Again (10.2) together with
Cpz(a)=1 force B/Z abelian, so B/Z = E 5 or Z4XZ,. In the latter case, if
we choose x B so that xZ has order 4 in B/Z, then
<x,7> =1Z,XZ, X724 or I, XZg, and both are impossible by (6.2). So in
fact B/Z = E s and B/Z is generated by subgroups B/Z of order 4 which
are a-invariant. Now (10.2) yields that each B, is abelian, and the result fol-
lows from (6.2).

AV |
¥

return to the proof of (10.1) and consider next the case that
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RNF(G) = 1. Then F = F(G) is a 2-group. Now we have
F = <Cp(R))|Z3; = Ry<R > by [4, Theorem 6.2.4], and since Cx(R) = 1
by (7.6) then for each Ry < R of order 3 the group Cx(R)) satisfies the con-
clusions of (10.3). It follows from (7.6) that Cx(R,) = 1 or E, for each such
Ry. As | F| <25 there is some Z; = Ry<R with Cx(Ry) = 1, so again (10.3)
yields F = E ¢ or F = J(T) with the notation of (6.2). In the latter case we
see that FR contains 27 involutions, 27 + 6-2* elements of order 3, 36 of order
4, 18:2* of order 6, and hence that dimV® = 4. This is impossible, so that
F = EI6 and FR ;A4XA4.

Finally, G/FR must be a subgroup of Dg. If G/FR has an element of order
4 then G has a subgroup H of the form E¢'(EyZ4). This group contains 51
involutions, 80 elements of order 3, 9-28 of order 4, 9:-16 of order 8, and 48 of
order 6; we compute that dimVH = 4, contradiction. So G/FR has exponent
2. Let x be an involution of G\ FR. Now FR has just two normal subgroups
isomorphic to A4, so x either fixes or interchanges them.

If x interchanges these two 4,’s then the group H = FR <x > contains 27
involutions, 80 elements of order 3, 36 of order 4 and 144 of order 6; this
leads to the contradiction dimV*R<*> = 4. So x normalizes each of the A4,’s
normal in FR. If 4, is one of these normal 4,’s then 4, <x> = 3, or
Z; XA, If the second case holds, and if 4, is the other normal 4,4, we must
have 4, <x> = 3; or Z, XA,, and then FR <x > contains either Z,XZ,
or Ej, respectively. This contradicts (7.6), so in fact 4,<x > = 3, for
i = 1, 2, which gives the third possibility of (10.1).

It remains to consider the possibility that RN F(G) = 1, R < F(G). Then
RNF(G) = Ry = Z3, and since Cg(R) = R by (7.6) we get F(G) = Z; X E,
by (7.6) once more. As there are no elements of order 12, another application
of (7.6) shows that Cg(Ry) = F(G)R = Z;XA, and of course
|G:Co(Ro)|<2. If G = Cg(Rg) then G < A4 X A4. If |G:Cs(Ry)|l =2
then |[Ng(R):R| = 2 and there is an involution x € Ng(R). We easily see
that G = F(G)R <x> is isomorphic either to a subgroup of the group
(A4 XA4)Z, already considered, or to the group 23 X E4. Butif G = 3; X E,
we easily find that dimV’¢ = 7, whereas for the group K = Z3 X E, of index 2
we get dimV’X = 6. This contradiction completes the proof of (10.1).

11. END OF PROOF

In this last section we assume that |G| = 29-3* with b < 1. After (7.3) we
may assume that 5 = 1. Note that the last paragraph established
G % Z;XE,. (1L1)

We must show, of course, that G is isomorphic to a subgroup of one of the
groups (1)-(xi) in Section 4.

Let R = Z; be a Sylow 3-subgroup of G, and assume first that R < F(G),
that is R <] G. After (7.6) we get Cg(R) = RXE where E is one of 1, Z,, or
E,4, and of course |G:C(R)|<2. If E = 1 then G = Z; or =; and we are
done. If E = Z, then either G = CG(R) = Z; or else a 2-Sylow of G has
order 4 and hence is E, or Z,. If E4 then G = Z,XZ3; is contained (for
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example) in Zs. If Z, then G = Z;-Z,4 1s contained in the group (44 XA44)Z;
of (vil).

Finally, assume that E = E4. If G = Cg(R) then G = Z; X E,4 1s con-
tained in A4 X A4. Otherwise, a Sylow 2-subgroup T of G has order 8. If Tis
non-abelian then T = Dy and G is again contained in (44X A4)Z,. If T is
isomorphic to Eg then G = =3 X Ey4, against (11.1). The only other possibility
is T = Z,XZ,, and we show this to be impossible as follows: let x be the
unique non-identity square in T. Then G = Cg(x), so G < A3 by (7.2), so
G/<x>(=Z, XZ3)<Ag. Referring to the proof of (7.2), we see that, up to
conjugacy, G/<x> must be the subgroup of Ag given by
<(12)(34)(56)(78)> X <(135)(246),(35)(46)>. In particular, a 2-Sylow of
G/<x > has the non-identity elements (12)(34)(56)(78), (12)(36)(45)(78) and
(35)(46). Pulling these back to G, the first two pull back to E,’s, the third to
Z,4. So a 2-Sylow of G, of order 8, contains Z, and two distinct E4’s, hence
must be Dg. Thus it is not Z, X 24, which is the desired contradiction.

We may now assume that R < F(G), in which case F(G) = Q is a 2-group
satisfying C(Q)<Q. We set Y = Q(Z(Q)), the subgroup of Z(Q) (1) gen-
erated by its involutions. Suppose that | Y |=>4. Then if Q/Y has an element
xY of order =4 then the abelian group <x,Y > contains either Z4XE4 or
Z; X Z,. This contradicts (7.6), so Q/Y has exponent 2, that is, it is elementary
abelian. Thus the Frattini subgroup ®(Q) of Q lies in Y. Now in fact this argu-
ment shows that ®(Q)<Y, whenever E; = Y,<Y. Then we get ®(Q)<NY¥,
where the intersection runs over the E4-subgroups of Y. If | Y|=8 this inter-
section is trivial, so that ®(Q) = [ and Q is itself elementary abelian.

If |Y| =4 then Z(Q) has rank 2. As it admits R, (7.6) yields either
Y = Z(Q) = E, or else Z(Q) = Z,XZ,. In the latter case <x,Z(Q)> 1is
abelian of order =2° whenever x € @\ Z(Q), against (7.6). So if
Z(Q)=Z,XZ, then Q=Z(Q). Finally, if |Y| = 2 then Z(Q) is cyclic,
hence centralized by R, so Y = Z(Q) = Z, by (7.6) once more. So there are
the following possibilities for Q:

(a) Q = Ey, 2<a<a4.

(b) Q = Z, X1,

(©) Z(Q) = E4, Q # Z(Q).
(d) Z(Q) = 17,.

If (b) holds then G < E 5. 24 (group (X)). (11.2)

PrOOF. The group L = E:Z, is the (unique) extension indicated which has
no elements of order 6. By (10.3) we see that O,(L) = J(T) in the notation of
(6.2). Moreover L = J(T):Z;. Now a 3-Sylow P of L fixes each of the three
Z, X Z4-subgroups of J(T) (cf. 6.2)), so at least one of these is fixed by
N, (P) = 3,, yielding a subgroup (Z4 X Z4):Z3; within L.
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Finally, since G = (Z4XZ4):Z3 or (Z,XZ,):2; the result follows.
If (c) holds then Co(R)NZ(Q) = 1. (11.3)

PrOOF. If not then R centralizes Z(Q) = E,, so that Y = Z(Q) = Cy(R)
by (7.6). Now we have already seen that Q/Y is elementary abelian, and since
Co/y(R) = 1 then Q/Y = E, or Es. In the latter case there are 5 distinct
R-invariant subgroups D/Y of Q/Y of order 16 which partition Q/Y. Since Q
is not elementary abelian, some D is not E ¢, so as Cp(R) = Y then D cannot
even be abelian.

So whatever the possibility for /Y, there is a non-abelian subgroup of D of
order 16 which admits R and Cp(R) = Z(D) = E,. Using (10.2) we see that
D = 2,XQg, DR = Z, XSL,(3). But then DR has 3 involutions, 8 elements
of order 3, 12 of order 4, and 24 of order 6. This yields the contradiction

dimVPR = L Q4-+83+68+412+224) = 4.

If (c) holds then either |Q| = 2% Co(R) = 1 and G < Eys : Z4 (type (11.4)
(X)) or |Q| = 2%, Co(R) = Z; and G < Eg :D\; (type (viii)).

PrOOF. We have Y = Z(Q) = E,, Q/Y elementary abelian, and Cy(R) = 1.
If |Q| =16 then |Q’| = 2 by (10.2), so 1 = Q' < Y N C(R), contradic-
tion. So |Q| = 2°. We have Q/Y = B/YXD/Y where B/Y = Cy,y(R),
and |B:Y|<4 by (76). If B/Y =1 we may apply (10.3) to see that
Q = D =J(T) in the notation of (6.2). If now G = QR then clearly
G < Eg: Z4, In fact G = E4:44, the subgroup of index 2. If G %= QR then
a 2-Sylow U of G has order 27 and G = Q:Z;. In this case each of the two
E¢’s in Q are normal in U by (6.2) (since U is a 2-Sylow of M>3), hence again
G = E|6IE4.

Now assume that B/Y = 1. Since Cp(R) = 1 we can apply (10.3) to D and
conclude that either D is abelian of order 16 or D =J(T) in the notation of
(6.2). Assume first that D =E¢. If |B:Y| = 4 then B = YXCp(R) =E ¢
(by (7.6)), and the group QR is isomorphic to the group denoted by H in the
last paragraph of the proof of (9.1). That calculation therefore gives
dimVeR = 4 a contradiction. So if D =E,s then |B:Y| =2, that is
Co(R) =Z,. Thus QR = D'R-Cy(R) = E\s:Z¢. If QR = G we are done. If
there is an involution of G inverting R then G =E s:D, as required. Other-
wise G = E\4:(Z3°Z;), G contains 19 involutions, 32 elements of order 3, 60
of order 4, 32 of order 6, and 48 of order 8, yielding the contradiction

dimV© = I—;E-(Z4+8-19+6~32+4-60+2-32+2-48) — 4
So we may now assume B/Y %= 1 and D = E . So either D = Z,XZ, or
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else D =J(T) and D contains an R-invariant subgroup D, = Z4XZ,.
Choose an involution x € Cg(R) and let H = DR <x > or DyR <x > in the
two cases. Consider O,(H): if all involutions of O,(H) lie in ¥ <x> = Ej
then O,(H) contains 7 involutions and 24 elements of order 4, whence

dimy % = %(24+ 8-7+4-24) is not an integer. So there are involutions in

O,(H)—Y <x>. These being permuted by R in cycles of length 3, we see
that Ozg-l ) contains 19 involutions and [2 elements of order 4. So in this case
dimv? ™) = 1/32(24+819+412) = 7. On the other hand D, = Z,XZ,

satisfies  dimV? = %(24+ 8:3+4-12) = 6, yielding the contradiction

D <0,(H), dim VP < dimv?™_ This completes the proof of (11.4).

If (d) holds then either G < GL,(3) (type (xi)) or G = (Q3*Q3s):Z3 (type (11.5)
(1x)).

PROOF. Let Y = Z(Q)=1Z,. If |Q| =8 we must have Q0 = Qg and
OR = SL;(3). If G = QR we are done and if there is an involution in
G\ QR then G = GL;(3). Otherwise, a 2-Sylow of G is isomorphic to Q, G
has I involution, 8 elements of order 3, 18 of order 4, 8 of order 6, and 12 of
order 8, yielding

dimV® = 4—[8(24+8+6-8+4~18+2-8+2-12) ~ 4

So we may now assume that |Q| = 6.

Note that by (7.2), we get G/Y < Ay, in particular |Q/Y| < 2°. If Q/Y is
elementary abelian then ®(Q) = Z(Q) = Y, so Q = Q3*Qg (cf. [4, Theorem
5.49)) and QR = (Q3*Q3):Z;. Thus if G = QR we are done. If not, we see
that, up to conjugacy, G/Y is the group
<(12)(34),(13)(24),(56)(78),(57X(68),(123)(456),(23)(56)>>. Then using (3.4), we
see that G itself contains 19 involutions, 32 elements of order 3, 60 of order 4,
32 of order 6, and 48 of order 8. This gives

dimVC = ﬁ(z4+8-19+6-32+4-60+2-32+2-48) ~ 4

Now assume that Q/Y is not elementary abelian. If Cy,y(R) = | then
1Q:Y| = 16 and we get Q/Y = Z,XZ4 by (10.2). As A3 has no subgroup of
the shape (Z4XZ4):Z; this is impossible, so Cg,y(R) = Z, and Cp(R) = E,.
Setting B = Cy(R), since Np(B) > B and R acts on Ny(B)/B without non-
trivial fixed-points, it must be the case that Cy(B) = No(B) has order 24 or
2% Since |Q| <25 and Z(Q)=2Z, we must have |Cp(B)| = 2* and
Q| = 26 Looking at the subgroups of A3 (=QR/Y), we see that Q/Y has a
subgroup D/Y = E ¢ which admits R with Cp(R) = Y. Then D = Q3*(Qs,
OR = (03*Q3):Z¢ and QR contains 27 involutions, 32 elements of order 3,
36 of order 4, and 96 of order 6. This yields
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dimVoR = T;z(24+8-27+6-32+4-36+2-96) = 4,
a contradiction. This completes the proof of (11.5).

It remains to consider case (a), 1.e., O elementary abelian. This is easy. If
Q=F,thenG=A,40r3,. If Q = Eg then QR = Z,XA,. If G = QR or
if there is an involution inverting R then G < Z, X 2, which is contained in
the group (44 XA4):Z, (type (vii)). If there is no involution inverting R and
G # QR then G = E,(Z5-Z,) is still isomorphic to a subgroup of
(A4 X A4):Z; (type (vii)).

Fmally assume that Q = El6- If CQ(R) = 1 then G<E|6IE3 <E|6:E4
(type (x)). If Cp(R)7# 1 then Cp(R)=E4 If G = QR then
G = EsXA4<(A4XA4):Z; (type (vii)), and if there is an involution x invert-
ing R then x cannot centralize Cy(R) by (7.6) (for in this case Q <x > con-
tains Z, X7, XZ4). Thus Co(R)<x> = Dy and again G<(A4,XA4,):Z,
(type (vii)). The last possibility is that no involution of G inverts R. In this
case the group Ng(R) has 2-Sylow Z, XZ,, and we showed earlier (when con-
sidering the case R<F(G)) that G cannot contain such a group. This com-
pletes the proof of the Main Theorem.
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